MachineLearning
-
Linear Regression
-
K-means clustering
-
Linear Support Vector Machine (SVM)
-
Logistic Regression
-
Naive Bayes
-
Softmax Regression
-
Decision Tree
-
Random Forest
-
Principal Component Analysis - PCA
-
Markov Decision Process (MDP)
-
Reinforcement Learning: Q-learning and social cooperation
-
A machine learning project recipe
-
K nearest neighbors
-
An Introduction on Natural Language Processing (NLP)
-
The Ethics of AI
-
An NLP Recipe
-
NLP: LSI and LDA
-
Clustering: Flat and Hierarchical
-
Clustering: DBSCAN
-
Restricted Boltzmann Machine
-
Boosting
-
Stacking
-
Time series: ARIMA
-
t-SNE
-
Collaborative Filtering
-
Content-based Filtering
-
Feature Selection
-
Feature Engineering
-
Interpretable AI: LIME
-
Interpretable AI: SHAP
-
Interpretable AI: CAM
-
Kernelized Support Vector Machine